Development of Novel CO₂-Selective Membrane for H₂ Purification

W.S. Winston Ho
The Ohio State University, Columbus, OH

DOE Program Manager: Nancy L. Garland

ANL Technical Advisor: Thomas G. Benjamin

2004 Program Review, Philadelphia, May 24 - 27, 2004

This presentation does not contain any proprietary or confidential information.

Objectives

Produce Enhanced H₂ Product with <10 ppm CO at High Pressure Used for Reforming

 Overcome Fuel-Flexible Fuel Processors Barrier L: H₂ Purification/CO Clean-up

 Achieve Target: <10 ppm CO in Product Stream

Budget

- Total Funding for the Project
 - \$880,000 (10/01/01 09/30/04)
 - DOE Share = \$704,000
 - Contractor Share = \$176,000

- Funding for FY04 = \$346,250
 - DOE Share = \$277,000
 - Contractor Share = \$69,250

Technical Barrier and Target

- DOE Technical Barrier for Fuel-Flexible Fuel Processors
 - L: H₂ Purification/CO Clean-up

- DOE Technical Target for Fuel-Flexible Fuel Processors for 2010
 - < 10 ppm CO in Product Stream

Approach

Use CO₂-Selective Membrane to:

- Remove CO₂ for H₂ Enhancement
- Drive Water-Gas-Shift (WGS) Reaction to Product Side

$$CO + H_2O \rightarrow H_2 + CO_2 \uparrow$$

Decrease CO to <10 ppm via CO₂ Removal

Fuel Processing with CO₂-Selective Membranes for Fuel Cells

Low Temperature CO₂-Selective Membrane

High Temperature CO₂-Selective Membrane

CO₂-Selective Membranes by Incorporating Amines in Polymer Networks ... Facilitated Transport

Example: Polyvinylalcohol- Containing Amine Membrane

Project Safety

- CO Monitor / Alarm Installed Next to Membrane Units for Personnel Safety
 - Alarm Never Sounded So Far for >2.5 Years of Membrane Operations (MOs), Indicating Safe MOs
- N₂ Purging Used in Ovens to Prevent CO / H₂
 Accumulation from Any System Leakage
 - Ovens Provide Precise Temperatures for Membrane Units for Accurate Exp. Measurements
 - Locking Device Installed to Prevent N₂ Purging from Accidental Shutdown
- Membrane Units Housed in a Hood
 - Locking Device Installed to Prevent Hood from Accidental Shutdown
- Safety Vulnerability Techniques Used (HAZOP, FMEA)

Project Timeline

	2001		2002			2003		2	2004	
Task	<u>4Q</u>	<u>1Q</u>	2Q 3Q	4Q	<u>1Q</u>	2Q 30	Q 4Q	<u>1Q</u>	2Q 3	Q
Phase 1										
 Modeling Study to Show ppm CO Feasible Synthesis of Novel Membranes 				Δ						
Phase 2				_						
3. Characterization of										
Membranes										
4. Set-up of Lab Reactor										
5. Membrane Fabrication										
6. Proof-of-Concept Demo							<u> </u>			
Phase 3										
7. Set-up of Membr. Reactor	r									
8. Fabrication of Membrane										
Module/Device										
9. Membrane Reactor Demo)									Δ

Technical Accomplishments

- WGS Membrane Reactor Experiments Showed
 - < 10 ppm CO Project Milestone Achieved
 - Small Cell: Circular (Laboratory Membrane Cell)
 - Big Cell: Rectangular with Well-defined Flow (7.5X Small Cell)
 - + Data in Line with Model
- CO₂ Removed Effectively to ~30 ppm
 - In Line with CO₂ Model Developed
- Membranes with High CO₂/H₂ & CO₂/CO
 Selectivities & High CO₂ Flux Synthesized
- <10 ppb H₂S Achieved Experimentally (Outside Project Scope)
 - H₂S Model Developed Shows This H₂S
 Achievable in Entrance Section

WGS Membrane Reactor Experiments Showed < 10 ppm CO: Small Cell

CO₂-Selective Membrane Reactor: Experiments and Modeling

Big Cell

- Well-defined Gas Flow and Velocity
- Suitable for Modeling and Scale-up

WGS Membr. Reactor Experiments Showed < 10 ppm CO in Line with Model: Big Cell

Calculated Space Velocity Based on Experimental Data: Big Cell

CO₂ Removed Effectively --CO₂ Concentration in Retentate

Methanation Readily Converts Carbon Oxides to Methane

Methanation (at ~160 – 180°C)

CO +
$$3 H_2 \longrightarrow CH_4 + H_2O$$

CO₂ + $4 H_2 \longrightarrow CH_4 + 2 H_2O$

- Important to Remove CO₂ as Much as Possible before Methanation
- Exit CO Concentration < 5 ppm

H₂S Removal Rate Expected to be Faster than CO₂ Rate (Outside the Project Scope)

CO₂ Reaction via Mainly Carbamate Formation

2 R-NH₂ + CO₂
$$\rightarrow$$
 R-NH-COO⁻ + R-NH₃⁺

H₂S Reaction via Small Proton Transfer
 ... Very High Rate

H₂S Has Higher Permeability than CO₂

H₂S/H₂ Selectivity Higher than CO₂/H₂ Selectivity

(Outside the Project Scope)

Modeling Shows <10 ppb H₂S Achievable in Entrance Section (Outside the Project Scope)

H₂S Removed Effectively: 50 ppm H₂S Feed

(Outside Project Scope)

H₂S Removed Effectively: 100 ppb H₂S Feed

(Outside the Project Scope) 120°C, 2 atm **Small Cell** Exit Dry H₂S Conc. (ppb)

Calculated Space Velocity Based on Exp. Data

50 ppm H₂S Feed (Outdise the Project Scope)

Significant Interactions/Collaborations

- Work with Unitel Technologies / H2fuel on Membrane Scale-up
 - Discussions with Auto Companies
- Collaboration with H₂ Supplier for Fuel Cell Applications
- Presentations / Publications on CO₂-Selective Membranes
 - 2 at AIChE 2003 Annual Meeting
 - 6 Seminars at Universities / Companies

Responses to Reviewers' Comments

- Recommend to Identify High-Temp Membrane
 - Continued to Synthesize / Characterize Membranes with Improved Thermal Stability
- Investigate Membrane Reactor Scale-up
 - Built a Big Cell (7.5X Small Cell) with Welldefined Flow Suitable for Modeling/Scale-up
 - Showed Data in Line with Model Developed
- Generate a Detailed Model (Experimental)
 - Developed WGS / CO₂ Removal Models
 - Showed Good Agreements between the Models and Experiments

Future Plans

- Continue to Synthesize / Characterize
 Membranes with Improved Properties
- Investigate Membrane Stability
- Complete Membrane Reactor Demonstration
- Demonstrate <10 ppm CO via CO₂
 Removal and Methanation for Fuel Cells
- Look into More Active WGS Catalysts